Approximating Almost All Instances of Max-Cut Within a Ratio Above the Håstad Threshold

نویسندگان

  • Alexis C. Kaporis
  • Lefteris M. Kirousis
  • Elias C. Stavropoulos
چکیده

We give a deterministic polynomial-time algorithm which for any given average degree d and asymptotically almost all random graphs G in G(n,m = d2n ) outputs a cut of G whose ratio (in cardinality) with the maximum cut is at least 0.952. We remind the reader that it is known that unless P=NP, for no constant > 0 is there a Max-Cut approximation algorithm that for all inputs achieves an approximation ratio of (16/17) + (16/17 < 0.94118).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-exponential Approximation Schemes for CSPs: From Dense to Almost Sparse

It has long been known, since the classical work of (Arora, Karger, Karpinski, JCSS 99), that Max-CUT admits a PTAS on dense graphs, and more generally, Max-k-CSP admits a PTAS on “dense” instances with Ω(n) constraints. In this paper we extend and generalize their exhaustive sampling approach, presenting a framework for (1−ε)-approximating any Max-k-CSP problem in sub-exponential time while si...

متن کامل

A 7/8-Approximation Algorithm for MAX 3SAT?

We describe a randomized approximation algorithm which takes an instance of MAX 3SAT as input. If the instance—a collection of clauses each of length at most three—is satisfiable, then the expected weight of the assignment found is at least 7=8 of optimal. We provide strong evidence (but not a proof) that the algorithm performs equally well on arbitrary MAX 3SAT instances. Our algorithm uses se...

متن کامل

Approximating generalizations of Max Cut

This thesis is written for the Swedish degree Licentiate of Science, teknisk licentiat. It is a university degree, intermediate between that of master and that of doctor. We study the approximability of different generalizations of the Max Cut problem. First, we show that Max Set Splitting and Max Not-All-Equal Sat are both approximable within 1.380 in probabilistic polynomial time. The algorit...

متن کامل

Inapproximability of Minimum Vertex Cover

Last time we examined a generic approach for inapproximability results based on the Unique Games Conjecture. Before, we had already shown that approximating MAX-3-LIN to within a constant factor larger than 12 is NP-hard. To do this we used a tweaked version of our dictatorship test that we came up with earlier in the semester. Last time we (re)proved that approximating MAX-3-LIN to within a co...

متن کامل

Approximating CSPs with global cardinality constraints using SDP hierarchies

This work is concerned with approximating constraint satisfaction problems (CSPs) with an additional global cardinality constraints. For example, Max Cut is a boolean CSP where the input is a graph G = (V, E) and the goal is to find a cut S ∪ S̄ = V that maximizes the number of crossing edges, |E(S , S̄ )|. The Max Bisection problem is a variant of Max Cut with an additional global constraint tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006